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I. Introduction 
In 2008, the original Bitcoin white paper described an algorithm called Proof of Work (PoW) [1] used to 
secure a publicly notarized, decentralized ledger system, independent of any centralized service. Because 
of the cost of participating in the PoW algorithm by all parties, a majority of participating parties could be 
assumed, when acting in self-interest, to correctly observe the network protocol, resulting in continuous 
and accurate processing of public ledger transactions, as long as attackers of the system did not attack 
with more than 50% of the computing power applied to processing on the network for any extended 
amount of time. This same PoW algorithm described in 2008 is now widely used to secure most existing 
cryptocurrencies today. While PoW has served Bitcoin and cryptocurrencies quite well, generally keeping 
billions of dollars of transactions processing worldwide on a daily basis, its use has also exposed 
weaknesses for some use cases and to specific kinds of targeted attacks. In fact, as we finish final edits on 
the first release of this proof sketch, one of the largest attempted 51% attacks in history is underway in the 
“Hash War” between Bitcoin Cash - ABC and Bitcoin Cash - SV. This paper describes an evolutionary 
alternative to pure proof of work that supports public validation with PoW, making the choice to 
participate in the network available to anyone willing to contribute work, while at the same time 
anchoring a significant portion of the network validation in the self-interest of non-mining network 
participants, notably holders of the currency for which the network processes transactions. 
 
Verus Proof of Power (PoP) is a hybrid consensus algorithm which uses a statistical function that 
combines Proof of Work (PoW) and Proof of Stake (PoS) to validate each block by either PoW or PoS, 
while averaging to a target percentage of blocks being validated by each form of proof. In this document 
we describe a PoW component of PoP and assume use of the VerusHash algorithm, a long-input hash 
function based on a Haraka512 V2 [2] core. PoP can, however, be implemented as a hybrid consensus 
algorithm with VerusPoS combined with virtually any PoW hash algorithm.  
 
Verus Coin is an open source community project working towards Public Blockchains as a Service that 
leverages the latest advances in zero knowledge privacy and public blockchain security. Verus Coin 
benefits from lineage in the latest Komodo platform technologies, such as enhanced Komodo 
Crypto-Conditions technology as well as the latest Zcash Sapling support. In addition to its advanced base 
security, which will be described herein and proven to be resistant to 51% or even 99% PoW hash attacks, 
Verus is backed by the dPoW (delayed proof of work) notarization of Komodo and the Bitcoin 
blockchain. Furthermore, its unique, enhanced implementation of Crypto Conditions also enables Verus 
Coin to also provide a solution to the PoS issue of nothing-at-stake. 

II. VerusHash PoW 
VerusHash was developed to deliver a competitive advantage for CPUs with GPUs.  It is an exceedingly 
CPU-friendly long input hash function that uses the quantum-secure, short input Haraka512 V2 as its core 
compression algorithm.  The result is the fastest known cryptocurrency hash algorithm available to 
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modern CPUs and the only hash algorithm which enables today’s CPUs and GPUs to compete on an 
economically comparable level. 
 
Haraka512 V2 is designed as a short input hash to exclusively consume one chunk of 512 bits and 
produce 256 bits of a hash result. Utilizing Haraka512 V2 VerusHash takes any length of input and 
produces a 256 bit hash result, unique to VerusHash, that also provides the same security guarantees as 
Haraka512 V2.  This makes VerusHash 256 bit secure for classical computing attacks and 128 bit secure 
against quantum computers for pre-image and second pre-image attacks [2]. 
 
To understand the VerusHash algorithm it helps to first separate the digest from the core.  We then 
consider the Haraka512 V2 core as an abstract digest function that takes 512 bits (64 bytes) of input and 
produces 256 bits (32 bytes) of output. Given such a digest function, referred to as haraka512256, the 
most concise implementation of VerusHash, in any language to-date, is the following Python code for the 
VerusHash hash digest as follows: 
 

# verus_hash 

def verus_hash(msg): 

    buf = [0] * 64 

    length = len(msg) 

    for i in range(0, length, 32): 

        clen = min(32, length - i) 

        buf[32:64] = [b for b in msg[i:i + clen]] + [0] * (32 - clen) 

        buf[0:32] = haraka512256(buf) 

    return bytes(buf[0:32]) 

 

As its PoW algorithm, Verus Coin calculates a block hash by applying the VerusHash algorithm to a 
Verus block header (essentially a Zcash and Komodo compatible header), with a reserved space in place 
of the Equihash solution. The result of this hash is then compared to the network-wide difficulty target 
and if the result is less than or equal to the target, the underlying block is submitted. 

III. VerusPoS 

Part I: General Overview 
VerusPoS is a proof-of-stake network block validation algorithm. VerusPoS defines a decentralized 
competition which operates network-wide in selecting validators for the next block on the Verus 
blockchain.  This is done according to consensus rules, using a network-wide contest similar to Verus 
PoW. The biggest difference between the VerusPoS contest and the PoW contest is that the winner 
selection is statistically weighted by the amount of Verus Coin under the control of the staking party, as a 
ratio of the entire network’s staking supply, rather than individual hash power as a ratio of network hash 
power. The process of determining whether a staker wins the opportunity to submit a block to the network 
is quite similar to the PoW process in the sense that a mathematical operation involving hashes and 
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specific inputs produces a random value, the Raw PoS Hash, for each unspent transaction output (UTXO) 
being staked. This Raw PoS Hash is then divided by the amount of currency in that particular UTXO to 
produce the PoS Hash for that UTXO. The resultant PoS Hash for that UTXO is then compared to a 
network-wide PoS difficulty value, which is itself adjusted at each block to maintain an average 
percentage of blocks being validated by PoS at 50%.  
 
In summary, VerusPoS goes through the process of creating block candidates with transactions, running 
the hashing and division operation across all UTXOs on all staking wallets across the network, comparing 
those results against the PoS difficulty and submitting winners at each block to the network for further 
validation and selection of best chain by consensus.  This process creates a statistical contest across all 
UTXOs staking on the network with one objective winner across the entire network in virtually all cases 
that a PoS block wins. Once submitted, the winning submission for that block height, whether PoS or 
PoW, is chosen network-wide based on the consensus of the chain with most cumulative Chain Power, a 
combined value of PoS and PoW, explained in more detail in “Section V: Proof of Power” below. 
 
VerusPoS is not a complete and independent consensus algorithm by itself, as it lacks a network-wide 
clock function.  This must be supplied by either an oracle or, as in the case of the Verus Coin blockchain, 
the total progression of block validation, including PoW, which ensures a predictable, monotonically 
increasing blockchain progression, even in the 50% of cases in which no staking UTXO on the network 
validates a block. Since the PoW and VerusPoS algorithms operate in parallel on the Verus Coin 
blockchain, it is critical to understand the relationship between PoW block validation and VerusPoS block 
validation in order to understand how VerusPoS strengthens security during potential attacks, rather than 
create additional instabilities with which to contend.  
 
VerusPoS uses the validation of a block on the blockchain as its only measure of the passage of time. 
While it could adapt to a variety of difficulty adjustment algorithms (DAAs) for PoS, the VerusPoS DAA 
increases its measure of the passage of time for each block when there are consecutive PoW blocks 
validated and decreases this measure for each block when there are consecutive VerusPoS blocks 
validated. This ensures that consecutive blocks of either form of validation, PoW or VerusPoS, are 
statistically discouraged. 
 
Since VerusPoS has no independent measure of time besides the validation of blocks on the blockchain 
and since the time between blocks of PoW blocks on the blockchain is determined by the hash rate, 
attacks that may speed up block validation by instantaneous addition of hash rate then slow down upon a 
hash rate decrease do not affect PoS ratio or progress relative to PoW in an ideal VerusPoS 
implementation. This is important, as this property ensures that PoS block validation remains stable and 
independent during any attempted hash attack, continuing to validate its target percentage of PoS blocks, 
whether at a faster or slower real-time rate. PoW difficulty is managed separately with a target block time 
for the total of all validated blocks on the network, since every block could conceivably be either PoW or 
PoS. Adjustment of the PoW difficulty is therefore the only adjustment necessary to compensate for 
increases or decreases in block time as measured in units of time, due to changes in network hash rate. 
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To prevent any ability of the staking party to influence their chances of successfully staking a block by 
generating UTXOs or affect other input values that could influence their outcome, VerusPoS defines 
specific rules of eligibility for UTXOs as well as hashed entropy sources that ensure the staker cannot 
intentionally influence current or future staking results in order to gain unfair advantage over other miners 
or stakers on the network. Specifically, the rules are: 
 

1. Staking UTXOs must be transparent pay-to-public-key or pay-to-public-key-hash. 
2. UTXOs become valid for staking once they have 150 or more confirmations. While another 

number could have been chosen, the number should be greater than the number of confirmations 
required on any network using VerusPoP. This ensures that the UTXO used to qualify for a 
staking operation was finalized prior to additional entropy in the PoS hash result that is outside of 
the control of the staking party. 

3. Valid staking UTXOs must have output values greater than the smallest transaction amount 
allowed by the network. 

 
To determine if an eligible UTXO also qualifies as the winning stake required to successfully submit a 
block of transactions to the network, the data from the transaction is first combined through hash 
operations with other related data as well as unrelated entropy into a random, yet deterministic Nonce 
value, as described in ​fig. 1, ​below. The Nonce, as well as additional data is further combined to produce 
the PoS Hash for that UTXO, which ultimately determines the eligibility of that UTXO as being the stake 
source for a block qualified to be submitted to the network. Once it is determined that a specific UTXO 
qualifies as a winning stake, proof-of-control over that stake is added to a PoS validated block by 
spending the UTXO back to its original address as the last transaction of the block, resetting the age of the 
qualifying stake and containing specific additional meta-data which identifies the transaction as a 
proof-of-stake transaction and binds that stake to the prior block of the blockchain, which also contributes 
to the VerusPoS solution to the nothing-at-stake problem. 

Part II: PoS Hash and PoS Nonce Construction 
To define the construction of the PoS Hash of any UTXO, we must first define the following values. Each 
of the values below contribute to the proof of stake Nonce value and/or the final PoS hash used in the 
network wide competition. Each has an important role in contributing to the PoS Hash and the quality of 
its random, deterministic value that cannot be manipulated to a participant’s advantage. Where the 
function Hash(input) is used, VerusHash may be assumed: 
 
Chain magic - agic 2 bit pseudorandom number assigned to chainm = 3  
UTXO TxId - xid ha256 hash of  transaction that holds UT XOt = S  
UTXO voutNum - out nteger index of  UT XOv = i  
UTXO Value - alue nteger index of  UT XOv = i  
ZeroBytes - eros  I , i ↦o , {0 7, o  }z = f :  n → O  i  < i < 1  i = 0  
PoW target -  2 bit compact representation of  256 bit P oW  targetT argetpow = 3  
PoS target -  2 bit compact representation of  256 bit P oS targetT argetpos = 3  
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New block height -  nteger index of  new potential block in blockchain Heightnew = i  
Block type - (Height) P oW " or "P oS" T ypeblock = "  
PoW hash -  Hashpow =  ash(blockheader)H  
Past hash -   Hashpast = f  T ype (Height  100) is "P oW ", Hash , else HashI block new −   pow  raw  
Entropy hash - ytes 5 through 16 of  Hash(Hash , txid, vout)Hashentropy = b past    
PoS Intermediate - (byte array)  I , i ↦b , {i , b }Intermediatepos = M :  n → B  i  ∈ In  i ∈ B  

-    {b ...b }  1 4 = T argetpos  
-    {b ...b }  5 16 = Hashentropy  
-    {b ...b } eros 17 32 = z  

PoS Nonce - (byte array) Noncepos =   I , i ↦c , {i , c }N :  n → C  i  ∈ In  i ∈ C  
-    {c ...c }  1 4 = T argetpos  
-    {c ...c }  5 16 = Hashentropy  
-    {c ...c } east signif icant 16 bytes of  Hash(Intermediate ) 17 32 = l pos  

PoS Hash (Raw) - Hash(magic, , )Hashraw =  Noncepos Heightnew  
PoS Hash (Final) - Hashpos = value

Hashraw  
 

 is the value used to compare to the network-wide PoS target to determine if a spend of thatHashpos  
UTXO as proof-of-stake in a block will be accepted as a validated block under the network consensus 
rules. In addition, the random value of consecutive zeros in the most significant bits of the nonce itself, 
limited to ½ the value of the , is also considered as additional stake value of that blockosT argetp  
submission when used to determine the Chain Power value of that block. Because in almost all cases this 
results in one single block with the largest stake value among all entries, if there are multiple entries for a 
particular block height, all peers in the network with the same information can still objectively agree upon 
the single best chain, based on consensus rules. 
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fig. 1 

 

IV. Verus Proof of Power 
Verus Coin implements Proof of Power (PoP) by combining VerusHash PoW and VerusPoS in a unique 
proof-of-work / proof-of-stake hybrid algorithm, in which both staking and mining compete 
simultaneously on the network for each and every block. The staking algorithm operates entirely in 
parallel, yet relative to, PoW progress which is used as the basis for the proof-of-stake block timer and 
difficulty adjustment.  
 
This approach targets proof-of-stake validation for a statistical percentage of the validated blocks, without 
any specific foreknowledge of which block shall be validated by which method, using a difficulty 
algorithm entirely relative to PoW progress and ensuring independence from fluctuations in network hash 
rate. PoP includes a modification to the PoW “most-work” rule, used to select the best chain among forks 
that replaces a comparison with the amount of work represented by each chain with a composite measure, 
known as “Chain Power”, which is the total validation power of the network comprised of both 
cumulative chain work as well as cumulative chain stake. 
 
To further reduce weak subjectivity in determining best chain, the PoS competition is augmented by an 
additional random, yet individually deterministic, stake value added to each block, which comes from the 

 directly and ensures one objective winner across the entire network in all but a statisticallyNoncepos  
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insignificant number of PoS contests won. The proof sketch under heading  “Sketch II” of section “VI. 
Informal Proof Sketches” demonstrates how mounting a 51% hash attack against a PoP blockchain would 
effectively require much more than 51% of the network hash power as well as a significant amount of the 
coin supply. 
 
Proof of Power also contributes to further decentralization by leveraging different, yet often intersecting, 
populations of interested network parties: those who mine; those who both mine and stake; and those who 
only stake. This enhanced decentralization further reduces risk of potentially centralized hardware 
advances while contributing to security by requiring a combination of attack vectors to be successful in 
order to mount a 51% attack on the network. 

V. Stake Guard 
In addition to the network-wide PoS contest and Chain Power selection, VerusPoP also includes an 
algorithm known as Stake Guard, which addresses the problem of “nothing-at-stake”, a theoretical 
weakness of PoS over PoW that applies to proof of stake algorithms generally. VerusPoP uses the Stake 
Guard crypto-condition, a form of smart transaction that enables conditional transaction validation using 
an implementation of the Crypto-Condition IETF draft [3], to penalize double-staking of the same UTXO 
on two fork versions of a chain. 
 
The Stake Guard algorithm enabling this penalty is a decentralized activity, where mining and staking 
participants on the network can look for double-staking protocol violations and use the signed stake 
transaction for the coins in question on one of the chain forks as the authorization, or proof of violation, 
which allows them to spend the double staker’s reward on the main chain to their own address. Stake 
Guard is a component of VerusPoP, which is independent of and layered over the base protocol. As such, 
while it is introduced as part of VerusPoP here, its proof is beyond the scope of this sketch. 

VI. Informal Proof Sketches 
The following informal proof sketches detail the effectiveness of VerusPoP, both at solving a number of 
established practical and theoretical issues with modern day PoW and PoS systems, and at avoiding 
potential problems which may arise by incorrectly combining PoS and PoW systems. 

Sketch I: Independence of VerusPoS from Network Hashrate 

Part I: Establishing Independence  
To truly benefit from the security aspects of both its PoW and VerusPoS components and to increase, 
rather than decrease, the security of the system as a whole by combining them, VerusPoP needs to ensure 
that changes to real network hashrate do not affect the statistical probability of PoW vs. PoS participation 



10 

in validating blocks. If the network is set to be 50% PoW and 50% VerusPoS, it must be able to maintain 
that ratio in the event a malicious actor were able to take control of the vast majority of network hashrate. 
 
To prove the independence of the relative percentage of PoS vs. PoW in the presence of greatly 
fluctuating hashrate, we will first describe what inputs are used to determine the proof-of-stake difficulty, 
which determines whether or not a PoS block will win by statistically calculating at least one PoS hash for 
one UTXO across the entire network staking supply and achieve a result that is less than or equal to the 
PoS difficulty target. 
 
We begin with the assumptions that 1) VerusPoS validations do not use any significant amount of 
computing power and will therefore always statistically occur more quickly than PoW blocks, even in the 
presence of significantly increasing hash power...and 2) there is at least one (1) VerusPoS staker and a 
total and constant staking supply at each block of ...and 3) the difficulty target  , which is aS T argetpos  
32 bit compact form of an unsigned 256 bit value, will be a function of its max value, denoted by 

, and , such that:MAXC256 S  
 

(2 S)*
MAXC256 = T argetpos  

 
We can conclude that if  is kept at the this ratio during operation, statistically, VerusPoS shouldT argetpos  
qualify to validate a block 50% of the time, independent of the network hashrate. Furthermore, if we were 
to modify the function to be as follows: 
 

(n S)*
MAXC256 = T argetpos  

 
We can see that VerusPoS would continue to statistically validate the number of blocks indicated by the 
mathematical ratio , independent of the network hashrate. It then follows that regardless of)%( n

100  
whether there is an instantaneous doubling, tripling, or more of network hashrate, as long as eligible 
staking calculations can be performed, compared to the target, and submitted to the network before a PoW 
block is solved, the percentage of blocks will depend on the staking difficulty, independent of the network 
hashrate for any constant staking difficulty. We have therefore established that given ideal staking 
performance, with respect to any specific, constant staking difficulty, the percentage of blocks that may 
be validated by VerusPoS is independent of hashrate. 

Part II: Accounting for Real World Fluctuations 
In the real world, the staking supply fluctuates, as does the staking difficulty.  This difficulty is controlled 
by the VerusPoS difficulty algorithm in a manner similar to a typical PoW difficulty algorithm, through a 
form of moving averages, but using specific input variables which isolate VerusPoS difficulty 
calculations from actual block-time or other inputs that may be influenced by hashrate. If we do not use 
inputs that can be influenced by changes in network hashrate while recalculating the difficulty target in 
order to raise or lower the percentage of blocks validated by PoS, we can safely assume that PoS 
percentage and difficulty adjustment are independent of hashrate fluctuations. 
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With this established, we denote a function  for the difficulty target  of any block , givenF T argetpos Bn  
block , that takes in two input values. One is the difficulty target  of , and theBn−1 astT argetL pos Bn−1  
other is a sequence , for the last  blocks, where each value in  is either a , to represent a blockQn n Qn 1  
validated by VerusPoS, or a , to represent a block validated by PoW. The function  can be denoted0 D  
as: 

 
(Q , LastT arget ) T arget  F n  pos =  pos  

 
Since we have already established that all of the inputs are independent of the network hashrate at any 
given hashrate, we can conclude that for difficulty adjustment algorithm , the PoS difficulty target isF  
independent of network hashrate. Therefore, we can further conclude that for a VerusPoS blockchain with 
a PoS difficulty target determined solely by a function, , the percentage of PoS(Q , LastT arget )F n  pos  
blocks validated by the network is independent of network hash rate. 

Sketch II: The Futility of 51% PoW Hash Attacks 

Part I: The 51% Hash Attack 
Using the above conclusion we can further define a VerusPoS Difficulty Adjustment Algorithm 
(POSDAA) as a function of the form . We can then reason that whatever average(Q , LastT arget )F n  pos  
percentage of blocks a VerusPoS DAA maintains as the PoS average, that percentage is independent of 
network hashrate. If we assume a POSDAA statistically maintains an average of 50% of blocks validated 
through VerusPoS and the other 50% through PoW, we can further conclude that in order for a malicious 
actor to gain majority validating control of a VerusPoP chain they would need to accumulate more than 
50% of the blockchain’s total validating power, otherwise referred to as Chain Power, including both 
PoW and VerusPoS validation. Following, we will prove that this is statistically impossible using solely 
PoW hash power or staking supply alone as long as the POSDAA keeps the average PoS validation 
percentage at 50% or above. 
 
If an attacker possessed more than 50% of the network PoW hashpower there are two scenarios in which 
they could attempt an attack on the network. First is the scenario in which they are conducting an attack 
on the main chain, in public, while there is a staking supply controlled by other peers.  The second is the 
scenario in which they conduct an attack in private, on their own version of the chain, where there is no 
staking supply in an attempt to then propagate their chain and overtake the network.  
 
In the first scenario, and the assumption of 50% average PoS validation percentage, the statistical 
probability that the next block will be validated through PoW is 50%, due to the presence of a staking 
supply, therefore the probability of a miner mining more than a given amount of PoW blocks  in a givenk  
amount of blocks  can be modeled by the binomial distribution function, in which  represents theirn h  
percentage of the PoW network hashpower: 
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(k x) ( ) ) )P ≥  = ∑
n

k=x

n!
k!(n−k)! * ( h

200
k

* ( h
200

n−k  

 
We continue with this function to determine that the expected value, , of blocks mined can be(k)E  
defined as: 
 

(k) nE =  * h
200  

 
Using the previous function we can show that in a theoretical sample of 100 blocks ( ) the00n = 1  
probability of a miner with 51% of the network hashpower ( ) winning more than 50% of the block1h = 5  
contests ( ), equates to about  and is, therefore, statistically improbable and nearly0x = 5 .27 %4 * 10−6  
impossible. Furthermore, we can show that the expected value of blocks won, given these parameters, 
would be ~25. 

Part II: Determining the Maximum Impact of a Hash Attack 
It is possible, however, that a determined malicious actor on the network could get more than 51% of the 
total PoW hashpower. To prove that this will not allow said actor to have any statistically possible 
opportunity to launch a successful attack we can calculate the probability of them winning more than 50% 
of the blocks on the network, given they control 100% of the PoW hashrate ( ) in that same00h = 1  
sample to be about . We can further show that, given these parameters, the expected value of blocks6%4  
won would be 50. Due to the probability of a single actor having 100% of the network PoW hash power 
being zero unless they are the only miner on the network, we can deduce that the maximum probability 
any one actor has to take control of more than 51% of the network is less than , given other miners6%4  
are present. Moreover, any miner with 100% of the PoW hashrate is expected to be limited to launching, 
at most, a 50% attack. 
 
In the second scenario, in which a miner mines in private without any stakers, creating a 100% PoW chain 
which they will then try and propagate to overtake the main chain, we can prove a 51% attack to be 
statistically improbable and nearly impossible.  We prove this by first defining how Chain Power 
evaluates if a chain is more or less powerful than the chain against which it is being compared, by taking 
the power  for each chain with length ,  to be a function of four values. 1) The cumulative workP n Cn  
of ,  2) the cumulative stake of , , 3) the largest work value out of both chainsCn workCn

Cn stakeCn
 

being compared,  and 4) the largest stake value out of both chains being compared, .workMAX stakeMAX   
 
The  value for  represents the sum of all work difficulty values from  to . Any givenworkCn

Cn W 0 W n  
block’s difficulty value is derived from, and inversely proportional to that block’s . Therefore,T argetpow  

 can be described as:workCn
 

 

workCn
= ∑

n

i=0
W i  
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The  value for  represents the sum of all stake difficulty values from  to  where eachstakeCn

Cn S0 Sn  
block’s stake value is supplemented a deterministic, random, imaginary amount of additional stake. This 
imaginary stake difficulty is calculated by taking the PoS Nonce value for the block and treating it as if it 
were a stake difficulty target, while limiting its contribution to ½ of the real stake difficulty value. Any 
given block’s difficulty value is derived from, and inversely proportional to that block’s in theT argetpos  
same way that work difficulty values are derived from . Therefore,  can be describedT argetpow stakeCn

 
as: 
 

 

{ x​,   ​if x < 2
Si  

f ​(​x​) =  
 2

Si f  xi ≥ 2
Si  

 

 

(R )),stakeCn
= ∑

n

i=0
(Si + f i  

 
Therefore, the power for chain  can be evaluated as follows. If either  or  areP n stakeMAX workMAX  
equal to , the denominator used in their place for function for  will be . The value  for chain 0 P n 1 P n  
can be described as: 

 

{ x​,   ​if =x / 0  
f ​(​x​) =  

 1 f  xi = 0  

 

 
(stake )/(g(stake ))) (work )/(g(work ))) P n = ( n MAX + ( n MAX  

 
Hence if an attackers chain  has 100% of all network PoW hashpower and no staking power, thena  

 and . We can compare it to a chain  in which there is no PoW hashpowerstakea = 0 worka = workMAX b  
and all of the network staking power, then  and . Therefore:stakeb = stakeMAX workb = 0  
 

/(stake )) (work )/(work ))P a = 0 MAX + ( MAX MAX = 1  
 

And 
 

(stake )/(stake )) 0/(work ))P b = ( MAX MAX + ( MAX = 1  
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P∴ a = P b  
 

Therefore, the maximum Chain Power an attacker can receive through PoW hashing alone on chain is ata  
most equal to the Chain Power on chain , given there are any stakers at all. This is also only possible ifb  
the only miner on the network is the attacker, the moment one miner begins to add PoW hashpower to 
chain , .b P a < P b  

VII. Conclusion 
From the reasoning above we can conclude that VerusPoP does in fact solve the 51% hash attack problem 
seen in many blockchains today.  Although taking over a chain that uses VerusPoP is not impossible, 
doing so with a 51% attack would require a combined value of over 50% of both the chain’s hashpower 
and its coin supply, making the success of any attack subject to acquisition of substantial amounts of 
validating stake as well as losses from any required stake participation and purchases thereof. 
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